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This study analyzed graphical solutions of 344 students (Gr 4-College) who were

administered a 40-item assessment of basic fraction concepts. Of particular interest are six

problems that required students to complete the whole given a fractional part presented in (a)

area context (3 items) and (b) set context (3 items). Results indicated fourth-grade students

frequently used the "doubling" strategy even if the fractional part showed "2/3". Othertimes,

students connected the outer dots to form a rectangular unit that is totally unrelated to the given

fractional part. Videotaped interviews of six grade 4 students clearly revealed these dominant

strategies. Nevertheless, there was improvement in student solution strategies as well as success

in completing the unit as the grade level increased. Implied misconceptions held by both

preservice teachers and elementary students include the assumption that the unit is always a

regular-shaped region rather than irregular. The findings indicate the strong influence of the

rectangular model often used in traditional mathematics textbooks on students' understanding of

the whole. They further support reforms in the teaching of fractions which include not only unit

partitioning activities but also completing the whole using a variety of models.

* A paper presented chring the 17th annual meeting of the North American Chapter for the
Psychology of Mathematics Education, Columbus, OH, October 21-24, 1995.
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Students' coordination of the unit shapes their ability to understand mathematical

concepts such as whole-number multiplication (Steffe, 1994), ratio (Lamon, 1993) and fractions

(Wanatabe, 1994). Research on the unit as the basic structure from which fraction ideas are

constructed documented the importance of partitioning in developing fraction knowledge and

analyzed students' mechanisms for partitioning the unit given in either continuous or discrete

context. Findings revealed (a) children (age 5-8) partition a continuous whole using vertical and

horizontal cuts and tend to ignore the whole when judging equality of parts (Pothier & Sawada,

1989), (b) older students (Gr 6-7) applied certain partitioning strategies based on the unit

measure they have chosen to show fair sharings (Kieren, Nelson & Smith, 1985).

Of equal importance to the study of rational number acquisition is children's schemes in

reconstructing the unit given a fractional part. Piaget, Inhelder & Szeminska (1960) argued that

fraction understanding is incomplete if the learner is not able to reconstruct the whole. Students at

this level have only acquired what Steffe and Olive (1991) refer as "pre-fraction" knowledge.

Furthermore, Saenz-Ludlow (1994) hypothesized that part-to-whole and whole-to-part are

inverse operations which, when fully established, can result in better understanding of fraction as a

quantity.

Few clinical studies have attempted to describe students' mechanisms in unit configuration

using discrete contexts. For example, Saenz-Ludlow (1994) gave Michael (Gr 3) the following

problem: If two nickels equal two tenths of the total amount, how much do I have? She surmised

that the student used natural number knowledge successfully to generate fraction concepts.

Meanwhile, Steffe and Olive (1991) described Karla's (Gr 5) response to a problem in which six

candies represent three-fourths of the whole candy bar.The student appropriately responded:

There are two more in the whole bar. In the studies mentioned above, both students had strong

knowledge of part-whole relationship. Studies that focus on student errors and misconceptions

about fractional numbers are also needed and can provide direction for designing instruction

which addresses these inadequacies (Graeber, 1992).
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Research Questions

This study was conducwd to formulate hypotheses about student methods in reconfiguring

the unit when a fractional part is known. Specifically, the following questions guided this

investigation:

1. What are the predominant solution strategies-students use to reconstruct the unit given

a fractional part in area or set context? Do these strategies differ according to grade level?

2. To what extent do these strategies reflect student ability to partition a unit?

3. What misconceptions could be implied from students' solution strategies?

Methodology

A 40-item fraction assessment instrument [see Taube (1993) for reliability and validity]

was developed by the researcher in which seven fraction subconcepts were assessed. Six of the

problems asked students to reconstruct the unit (see Appendix A) by either completing the whole

on a rectangular dot paper or figuring out how many objects form the unit in the case of problems

involving the set model.

The sample was selected by asking teacher volunteers to administer the test in their

classes. A total of 344 testpapers were returned from three adjacent school districts in south

Texas where about 90% of the students are Mexican-Americans (ESL students). Analyses of

students' responses on the six items were based on the total respondents. From the total group,

260 students were selected by stratified sampling for statistical analyses (see Table 1).

Table 1
vistribution of sample included in the statistical analyses

Level
I (Elementary)

II (Middle sch)
III (Middle sch)
IV (High sch)
V (Dev. math)

VI (Future teachers)

Grade
4 & 5
6 & 7
6 & 7 (GT)
9 & 10
Freshmen
Junior & Senior

n

44 (76)
44 (55)
43 (66)
43 (46)
43 (49)
43 (52)

note. Group total in parentheses
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Findings

This preliminary investigation focused on six fraction problems involving reconstructing

the whole. Results from both statistical tests and analysis of graphical solutions are summarized

below:

1. The mean scorzs on the six problems indicated the Grades 6 and 7 GT students were

more successful than tne secondary and developmental mathematics students (see Table 2).

ANOVA test further snowed significant mean differences (p<.05) among the six groups. Scheffe

test indicated the preservice teachers differed significantly (p<.05) from the other students except

the GT group.

Table 2
Mean scores and standard deviations on 6 items by level

Level
1 2 3 4 5 6

Mean 1.52 3.29 4.56 2.53 2.78 4.25
SD 1.24 2.24 1.41 1.69 1.67 1.54

note. n=260

2. A significant positive correlation (r = .52) was observed between students'

performance on problems presented in set and area contexts.

3. Analysis of students' solutions on each of the six problems revealed the following:

a) The fourth- and fifth-grade students basically used the doubling strategy (e.g., adding a

region congruent to the given fractional part). A summary of the strategies (see Appendix A)

inferred from the graphical solutions of students indicated that doubling and forming a rectangular

whole were automatic responses given by the younger students. The videotaped interviews

captured similar observation.

b) The numerator and denominator of the fraction appeared to be the deciding factors in

determining the rectangular whole. For example, if a fractional region represented "2/3", then the

student would draw a 2-by-3 rectangle to represent the whole.

c) Students who successfully completed the whole showed correct partitioning by marking

equal parts on the given figure.

d ) The older students frequently used mathematical algorithm when a set model was
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presented. This was evident in the solutions of preservice elementary teachers and the GT

students as well. For example, a student wrote 6 sr 3 = 2 to determine the total
15 ?; 3 5

number of balls (15) if 6 balls were "2/5" of the unit. Thus, the student applied the notion

of equivalent fractioas to figure out the discrete whole.

Hypotheses

The intent of this study was to formulate hypotheses about students' ability to traverse the

conccptual bridge between part-to-whole and whole-to-part as inverse operations. Analysis of

student graphical solutions on a paper-pencil assessment and individual interviews seem to

support the following hypotheses:

1. Fourth- and fifth-grade students hold a preconceived notion of the whole as a

rectangular shape when they are asked to reproduce the whole on a dot paper. They do not focus

on the part-whole relations and seem "uneasy" with an irregular-shaped whole.

2. Students who are aware that a fractional part can be further partitioned into a specific

number of subparts tend to have success in completing the whole.

3. Students tend to fall back on either the circular or rectangular model to verify or justify

their responses on tasks presented in a set context.

4. Students' solution strategies in constructing the unit from a fractional part differ

according to the representation mode used.
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APPENDIX

Percentage of students (per level) using a specific strategy

AREA MODEL

Problem 1: I am thinking of a figure.
Only 4 sixths of the figure is drawn below.
Add on to the given figure to draw the whole.

Problem 2: The picture below shows two
thirds of the whole birthday cake. Draw the
whole birthday cake.

. .

. .

Problem 3: The figure below

Strategy
- 1 2

Level
3 4 5 6

*add 2 unit squares 12% 35% 67% 35% 33% 58%
doubling 12% 0 7% 2% 4% 2%
draw square 46% 50% 23% 32% 24% 23%

* airrect answer
n=344

Strategy Level
1 2 3 4 5 6

*Add a third 17% 58% 76% 44% 31% 71%
doubling 34% 14% 12% 15% 19% 11%
same size 21% 5% 0 47% 0 0

draw rectangle 20% 17% 6% 22% 30% 11%

shows part of a model for a

playgound. Only 3 fourths of *correct answer
the playground is shown. n=344

Strategy Level

Draw the whole model of the 1 2 3 4 5 6

playground on the space below. *Add a fourth 18% 55% 85% .37% 46% 76%
doubling 23% 0 4% 8% 0 2%--41
same size 21% 0 0 2% 0 0

- draw rectangle 34% 34% 8% 26% 35% 12%

*correct answer
n=329



SET MODEL

Problem 4:

Look at the picture below. The can
holds some marbles. The 6 marbles
shown are only 2 fifths of the
total marbles. How many marbles
are there altogether?

a ) 6

frb ) 15

c) 12

d) 4

e) I don' t know.

GO000

Problem 5:

Below you can see 1 third of all
the ice cream bars. The rest of
th are in the box. How many ice
cream bars are there altogether?

a ) 4

b) 2

c ) 3

*d) 6

e ) I don ' t know. .

Problem 6:

Observe the picture below. It
shows 2 fourths of all the stars.
The others are covered by the
cloth. How many stars are there
altogether?

a ) 6

*b) 12

c) 8

d) 14

e) I don ' t know.

Strategy Level

1 2 3 4 5 6
*formcd 2 equal sets 26% 45% 77% 38% 39% 78%

doubling 26% 32% 15% 21% 33% 14%

same amount 32% 9% 1% 19% 6% 4%

Incorrect meaning
for 2/5 8% 5% 1% 0 6% 2%

*correct answer
nr--' 340

Strategy Level

1 2 3 4 5 6
* made 2 equal sets 37% 62% 88% 48% 71% 84%

based on 3 objccts
make the unit 12% 13% 0 6% 8% 0

doubled 16% 11% 11% 13% 14% 16%

same set 19% 6% 6% 15% 2% 0

*correct answer
n=336

Strategy Level

1 2 3 4 5 6

*doubled 38% 60% 79% 52% 57% 76%

same amount 36% 9% 12% 22% 16% 16%

wrong meaning of
"214" 12% 20% 8% 9% 14% 2%

add 8 Si. 6 4% 4% 0 2% 10% 2%

*correct answer
n=339


